
Approximate Normalization for Gradual
Dependent Types

Joseph Eremondi, Éric Tanter, Ronald Garcia
University of British Columbia, University of Chile/INRIA
ICFP 2019

2/178

Our Contributions

3/178

Our Contributions

GDTL:
Gradual Dependently Typed Language

4/178

Our Contributions

GDTL:
Gradual Dependently Typed Language
● Full spectrum, universe hierarchy

5/178

Our Contributions

GDTL:
Gradual Dependently Typed Language
● Full spectrum, universe hierarchy
● Can replace any type or term with ?

6/178

Our Contributions

GDTL:
Gradual Dependently Typed Language
● Full spectrum, universe hierarchy
● Can replace any type or term with ?
● Embeds fully typed & untyped calculi

7/178

Our Contributions

GDTL:
Gradual Dependently Typed Language
● Full spectrum, universe hierarchy
● Can replace any type or term with ?
● Embeds fully typed & untyped calculi
● Decidable typechecking

8/178

Our Contributions

GDTL:
Gradual Dependently Typed Language
● Full spectrum, universe hierarchy
● Can replace any type or term with ?
● Embeds fully typed & untyped calculi
● Decidable typechecking

This talk

9/178

Our Contributions

GDTL:
Gradual Dependently Typed Language
● Full spectrum, universe hierarchy
● Can replace any type or term with ?
● Embeds fully typed & untyped calculi
● Decidable typechecking

● Proof of gradual type safety

This talk

10/178

Our Contributions

GDTL:
Gradual Dependently Typed Language
● Full spectrum, universe hierarchy
● Can replace any type or term with ?
● Embeds fully typed & untyped calculi
● Decidable typechecking
● Proof of gradual type safety
● Gradual Guarantees (Siek et al 2015):
reducing precision of term won’t
create new static or dynamic
failures

This talk

11/178

Our Contributions

GDTL:
Gradual Dependently Typed Language
● Full spectrum, universe hierarchy
● Can replace any type or term with ?
● Embeds fully typed & untyped calculi
● Decidable typechecking
● Proof of gradual type safety
● Gradual Guarantees (Siek et al 2015):
reducing precision of term won’t
create new static or dynamic
failures

This talk

See paper

Why Gradual Dependent Types?

13/178

Dependent Types: Pain and Promise

14/178

Dependent Types: Pain and Promise

Expectation

$> compile ./myprogram
>> 0 bugs detected!

15/178

Dependent Types: Pain and Promise

Expectation

$> compile ./myprogram
>> 0 bugs detected!

Reality

$> compile ./myprogram
>> Type mismatch between

 Vec Nat (m+n)
 and

 Vec Nat (n+m)

16/178

Dependent Types: Pain and Promise

Expectation

$> compile ./myprogram
>> 0 bugs detected!

Reality

$> compile ./myprogram
>> Type mismatch between

 Vec Nat (m+n)
 and

 Vec Nat (n+m)

● Popular for proof assistants

17/178

Dependent Types: Pain and Promise

Expectation

$> compile ./myprogram
>> 0 bugs detected!

Reality

$> compile ./myprogram
>> Type mismatch between

 Vec Nat (m+n)
 and

 Vec Nat (n+m)

● Popular for proof assistants
● Not popular for programming

18/178

A Vicious Cycle

19/178

A Vicious Cycle

Complexity of
Dependent Types

20/178

A Vicious Cycle

Complexity of
Dependent Types

High Barrier
to Entry

21/178

A Vicious Cycle

Complexity of
Dependent Types

High Barrier
to Entry

Few Users of
Dependent Types

22/178

A Vicious Cycle

Complexity of
Dependent Types

High Barrier
to Entry

Sparse Tooling
and Libraries

Few Users of
Dependent Types

23/178

A Vicious Cycle

Complexity of
Dependent Types

High Barrier
to Entry

Sparse Tooling
and Libraries

Few Users of
Dependent Types

24/178

A Vicious Cycle

Complexity of
Dependent Types

High Barrier
to Entry

Sparse Tooling
and Libraries

Few Users of
Dependent Types

● Flexible type system
● Rapid prototyping

25/178

A Vicious Cycle

Complexity of
Dependent Types

High Barrier
to Entry

Sparse Tooling
and Libraries

Few Users of
Dependent Types

● Easier porting
● Safer FFI

● Flexible type system
● Rapid prototyping

Goals For
Gradual Dependent Types

27/178

Motivation: Lists vs. Vectors

28/178

Motivation: Lists vs. Vectors

data List a
 where
 Nil : List a
 Cons : a
 -> List a
 -> List a

head : List a -> a

29/178

Motivation: Lists vs. Vectors

data List a
 where
 Nil : List a
 Cons : a
 -> List a
 -> List a

head : List a -> a

No size knowledge
in type

30/178

Motivation: Lists vs. Vectors

data List a
 where
 Nil : List a
 Cons : a
 -> List a
 -> List a

head : List a -> a

Error on Nil

No size knowledge
in type

31/178

Motivation: Lists vs. Vectors

data List a
 where
 Nil : List a
 Cons : a
 -> List a
 -> List a

head : List a -> a

Error on Nil

No size knowledge
in type

32/178

Motivation: Lists vs. Vectors

data List a
 where
 Nil : List a
 Cons : a
 -> List a
 -> List a

head : List a -> a

data Vec (a : Type) (n : Nat)
 where
 Nil : Vec a 0
 Cons : a
 -> Vec a n
 -> Vec a (n + 1)

head : Vec a (n + 1) -> a

Error on Nil

No size knowledge
in type

33/178

Motivation: Lists vs. Vectors

data List a
 where
 Nil : List a
 Cons : a
 -> List a
 -> List a

head : List a -> a

data Vec (a : Type) (n : Nat)
 where
 Nil : Vec a 0
 Cons : a
 -> Vec a n
 -> Vec a (n + 1)

head : Vec a (n + 1) -> a

Error on Nil

No size knowledge
in type

Length in type index

34/178

Motivation: Lists vs. Vectors

data List a
 where
 Nil : List a
 Cons : a
 -> List a
 -> List a

head : List a -> a

data Vec (a : Type) (n : Nat)
 where
 Nil : Vec a 0
 Cons : a
 -> Vec a n
 -> Vec a (n + 1)

head : Vec a (n + 1) -> a

Error on Nil Won’t typecheck for Nil

No size knowledge
in type

Length in type index

35/178

Porting Code to Dependent Types

36/178

Porting Code to Dependent Types

sort : List Int -> List Int

37/178

Porting Code to Dependent Types

sort : List Int -> List Int

sort Nil = Nil

38/178

Porting Code to Dependent Types

sort : List Int -> List Int

sort Nil = Nil

sort (Cons head tail) =

39/178

Porting Code to Dependent Types

sort : List Int -> List Int

sort Nil = Nil

sort (Cons head tail) =
 sort (filter (<= head) tail))

40/178

Porting Code to Dependent Types

sort : List Int -> List Int

sort Nil = Nil

sort (Cons head tail) =
 sort (filter (<= head) tail))
 ++ [head]

41/178

Porting Code to Dependent Types

sort : List Int -> List Int

sort Nil = Nil

sort (Cons head tail) =
 sort (filter (<= head) tail))
 ++ [head]
 ++ sort (filter (> head) tail))

42/178

Porting Code to Dependent Types

sort : List Int -> List Int

sort Nil = Nil

sort (Cons head tail) =
 sort (filter (<= head) tail))
 ++ [head]
 ++ sort (filter (> head) tail))

filter : (Int -> Bool)
 -> List Int -> List Int

43/178

Porting Code to Dependent Types

sort : List Int -> List Int

sort Nil = Nil

sort (Cons head tail) =
 sort (filter (<= head) tail))
 ++ [head]
 ++ sort (filter (> head) tail))

filter : (Int -> Bool)
 -> List Int -> List Int

Vec Int n

44/178

Porting Code to Dependent Types

sort : List Int -> List Int

sort Nil = Nil

sort (Cons head tail) =
 sort (filter (<= head) tail))
 ++ [head]
 ++ sort (filter (> head) tail))

filter : (Int -> Bool)
 -> List Int -> List Int

Vec Int n Vec Int n

45/178

Porting Code to Dependent Types

sort : List Int -> List Int

sort Nil = Nil

sort (Cons head tail) =
 sort (filter (<= head) tail))
 ++ [head]
 ++ sort (filter (> head) tail))

filter : (Int -> Bool)
 -> List Int -> List Int

Vec Int n Vec Int n

✓

46/178

Porting Code to Dependent Types

sort : List Int -> List Int

sort Nil = Nil

sort (Cons head tail) =
 sort (filter (<= head) tail))
 ++ [head]
 ++ sort (filter (> head) tail))

filter : (Int -> Bool)
 -> List Int -> List Int

Vec Int n Vec Int n

✓

} Need proof
that
lengths
sum to n

47/178

Porting Code to Dependent Types

sort : List Int -> List Int

sort Nil = Nil

sort (Cons head tail) =
 sort (filter (<= head) tail))
 ++ [head]
 ++ sort (filter (> head) tail))

filter : (Int -> Bool)
 -> List Int -> List Int

Vec Int n Vec Int n

✓

Vec Int n

} Need proof
that
lengths
sum to n

48/178

Porting Code to Dependent Types

sort : List Int -> List Int

sort Nil = Nil

sort (Cons head tail) =
 sort (filter (<= head) tail))
 ++ [head]
 ++ sort (filter (> head) tail))

filter : (Int -> Bool)
 -> List Int -> List Int

Vec Int n Vec Int n

✓

Vec Int n Vec Int ___

} Need proof
that
lengths
sum to n

49/178

How To Solve?

50/178

How To Solve?

Static
Dependent
Types

51/178

How To Solve?

Static
Dependent
Types

Existential
Types, Inductive
Proof

52/178

The Static Approach

53/178

The Static Approach

rewriteFilterLength :

54/178

The Static Approach

rewriteFilterLength :
 (v : Vec Int n)

55/178

The Static Approach

rewriteFilterLength :
 (v : Vec Int n)
 -> (p : Int -> Bool)

56/178

The Static Approach

rewriteFilterLength :
 (v : Vec Int n)
 -> (p : Int -> Bool)
 -> Vec Int
 (length (filter p v)
 + 1 + length (filter (not . p) v)

57/178

The Static Approach

rewriteFilterLength :
 (v : Vec Int n)
 -> (p : Int -> Bool)
 -> Vec Int
 (length (filter p v)
 + 1 + length (filter (not . p) v)
 -> Vec Int n

58/178

The Static Approach

rewriteFilterLength :
 (v : Vec Int n)
 -> (p : Int -> Bool)
 -> Vec Int
 (length (filter p v)
 + 1 + length (filter (not . p) v)
 -> Vec Int n

Relies on induction, commutativity, etc.

59/178

Gradual Proof Terms

sort : Vec Int n -> Vec Int n

sort Nil = Nil

sort (Cons head tail) =

 sort (filter (<= head) tail))
 ++ [head]
 ++ sort (filter (> head) tail))

filter : (Int -> Bool)
 -> Vec Int n -> Vec Int ?

60/178

Gradual Proof Terms

sort : Vec Int n -> Vec Int n

sort Nil = Nil

sort (Cons head tail) =

 sort (filter (<= head) tail))
 ++ [head]
 ++ sort (filter (> head) tail))

filter : (Int -> Bool)
 -> Vec Int n -> Vec Int ?

 rewriteFilterLength (

)

61/178

How To Solve?

Static
Dependent
Types

Existential
Types, Inductive
Proof

62/178

How To Solve?

Static
Dependent
Types

Existential
Types, Inductive
Proof

✗Significant
effort required

63/178

How To Solve?

Static
Dependent
Types

Existential
Types, Inductive
Proof

✗Significant
effort required

Non-dependent
Gradual Types

64/178

How To Solve?

Static
Dependent
Types

Existential
Types, Inductive
Proof

✗Significant
effort required

Non-dependent
Gradual Types

filter returns
?
unknown type

65/178

How To Solve?

Static
Dependent
Types

Existential
Types, Inductive
Proof

✗Significant
effort required

Non-dependent
Gradual Types

filter returns
?
unknown type

✗Can have
non-list return

66/178

How To Solve?

Static
Dependent
Types

Existential
Types, Inductive
Proof

✗Significant
effort required

Non-dependent
Gradual Types

filter returns
?
unknown type

✗Can have
non-list return

Gradual
Dependent
Types

67/178

How To Solve?

Static
Dependent
Types

Existential
Types, Inductive
Proof

✗Significant
effort required

Non-dependent
Gradual Types

filter returns
?
unknown type

✗Can have
non-list return

Gradual
Dependent
Types

filter returns
Vec Int ?
unknown length

68/178

How To Solve?

Static
Dependent
Types

Existential
Types, Inductive
Proof

✗Significant
effort required

Non-dependent
Gradual Types

filter returns
?
unknown type

✗Can have
non-list return

Gradual
Dependent
Types

filter returns
Vec Int ?
unknown length

✓Precise in
type, flexible in
length!

69/178

How To Solve?

Static
Dependent
Types

Existential
Types, Inductive
Proof

✗Significant
effort required

Non-dependent
Gradual Types

filter returns
?
unknown type

✗Can have
non-list return

Gradual
Dependent
Types

filter returns
Vec Int ?
unknown length

✓Precise in
type, flexible in
length!

Our approach!

70/178

The GDTL Solution

sort : Vec Int n -> Vec Int n

sort Nil = Nil

sort (Cons head tail) =
 sort (filter (<= head) tail))
 ++ [head]
 ++ sort (filter (> head) tail))

filter : (Int -> Bool)
 -> Vec Int n ->

71/178

The GDTL Solution

sort : Vec Int n -> Vec Int n

sort Nil = Nil

sort (Cons head tail) =
 sort (filter (<= head) tail))
 ++ [head]
 ++ sort (filter (> head) tail))

filter : (Int -> Bool)
 -> Vec Int n -> Vec Int ?

72/178

The GDTL Solution

sort : Vec Int n -> Vec Int n

sort Nil = Nil

sort (Cons head tail) =
 sort (filter (<= head) tail))
 ++ [head]
 ++ sort (filter (> head) tail))

filter : (Int -> Bool)
 -> Vec Int n -> Vec Int ?

} ?+1+? evals
to ?, is
consistent
with n

73/178

Gradual Type Safety

74/178

Gradual Type Safety

75/178

Gradual Type Safety

76/178

Gradual Type Safety

head : Vec a (n+1) -> a

77/178

Gradual Type Safety

head : Vec a (n+1) -> a

x : Vec a 0

78/178

Gradual Type Safety

head : Vec a (n+1) -> a

x : Vec a 0

theHead = head x

79/178

Gradual Type Safety

head : Vec a (n+1) -> a

x : Vec a 0

theHead = head x

● Does not typecheck

80/178

Gradual Type Safety

head : Vec a (n+1) -> a

x : Vec a 0

theHead = head x

81/178

Gradual Type Safety

head : Vec a (n+1) -> a

theHead = head x

x : Vec a ?

82/178

Gradual Type Safety

head : Vec a (n+1) -> a

theHead = head x

x : Vec a ? ● Typechecks!

83/178

Gradual Type Safety

head : Vec a (n+1) -> a

theHead = head x

x : Vec a ?

x Nil↦

84/178

Gradual Type Safety

head : Vec a (n+1) -> a

theHead = head x

x : Vec a ?

x Nil↦ ● Runtime error

85/178

Gradual Type Safety

head : Vec a (n+1) -> a

theHead = head x

x : Vec a ?

x Nil↦ x Cons 1 Nil↦

86/178

Gradual Type Safety

head : Vec a (n+1) -> a

theHead = head x

x : Vec a ?

x Nil↦ x Cons 1 Nil↦● Runs successfully

87/178

Filling in the Proof

sort : Vec Int n -> Vec Int n

sort Nil = Nil

sort (Cons head tail) =

 sort (filter (<= head) tail))
 ++ [head]
 ++ sort (filter (> head) tail))

filter : (Int -> Bool)
 -> Vec Int n -> Vec Int ?

} Need proof
that lengths
sum to n

88/178

Filling in the Proof

sort : Vec Int n -> Vec Int n

sort Nil = Nil

sort (Cons head tail) =

 sort (filter (<= head) tail))
 ++ [head]
 ++ sort (filter (> head) tail))

filter : (Int -> Bool)
 -> Vec Int n -> Vec Int ?

} Need proof
that lengths
sum to n

89/178

Gradual Proof Terms

90/178

Gradual Proof Terms

rewriteFilterLength :
 (v : Vec Int n)
 -> (p : Int -> Bool)
 -> Vec Int
 (length (filter p v)
 + 1 + length (filter (not . p) v)
 -> Vec Int n

91/178

Gradual Proof Terms

rewriteFilterLength :
 (v : Vec Int n)
 -> (p : Int -> Bool)
 -> Vec Int
 (length (filter p v)
 + 1 + length (filter (not . p) v)
 -> Vec Int n

rewriteFilterLength = ?

92/178

Gradual Proof Terms

rewriteFilterLength :
 (v : Vec Int n)
 -> (p : Int -> Bool)
 -> Vec Int
 (length (filter p v)
 + 1 + length (filter (not . p) v)
 -> Vec Int n

}
Like
Idris/Agda
typed holes

rewriteFilterLength = ?

93/178

Gradual Proof Terms

sort : Vec Int n -> Vec Int n

sort Nil = Nil

sort (Cons head tail) =

 sort (filter (<= head) tail))
 ++ [head]
 ++ sort (filter (> head) tail))

filter : (Int -> Bool)
 -> Vec Int n -> Vec Int ?

94/178

Gradual Proof Terms

sort : Vec Int n -> Vec Int n

sort Nil = Nil

sort (Cons head tail) =

 sort (filter (<= head) tail))
 ++ [head]
 ++ sort (filter (> head) tail))

filter : (Int -> Bool)
 -> Vec Int n -> Vec Int ?

 rewriteFilterLength (

)

95/178

Gradual Proof Terms

sort : Vec Int n -> Vec Int n

sort Nil = Nil

sort (Cons head tail) =

 sort (filter (<= head) tail))
 ++ [head]
 ++ sort (filter (> head) tail))

filter : (Int -> Bool)
 -> Vec Int n -> Vec Int ?

 rewriteFilterLength (

)

This code typechecks and runs!

96/178

Semantics of ? in GDTL

97/178

Semantics of ? in GDTL

● ? has type ?, can use at any type

98/178

Semantics of ? in GDTL

● ? has type ?, can use at any type
● Eliminating ? produces ?

99/178

Semantics of ? in GDTL

● ? has type ?, can use at any type
● Eliminating ? produces ?
● Runtime checks ensure safety

100/178

Semantics of ? in GDTL

● ? has type ?, can use at any type
● Eliminating ? produces ?
● Runtime checks ensure safety

subst : a = b -> P a -> P b

101/178

Semantics of ? in GDTL

● ? has type ?, can use at any type
● Eliminating ? produces ?
● Runtime checks ensure safety

subst : a = b -> P a -> P b

badProof : 0 = 1
badProof = ?

102/178

Semantics of ? in GDTL

● ? has type ?, can use at any type
● Eliminating ? produces ?
● Runtime checks ensure safety

subst : a = b -> P a -> P b

badProof : 0 = 1
badProof = ?

head ((subst badProof nil) :: Vec Int 1)

103/178

Semantics of ? in GDTL

● ? has type ?, can use at any type
● Eliminating ? produces ?
● Runtime checks ensure safety

subst : a = b -> P a -> P b

badProof : 0 = 1
badProof = ?

head ((subst badProof nil) :: Vec Int 1)

● Typechecks
● Runtime type error

GDTL: A Gradual Dependently
Typed Language

105/178

Gradual Dependent Types

106/178

Gradual Dependent Types

Statics + Dynamics mostly using
Abstracting Gradual Typing (Garcia et. al. 2016)

107/178

Gradual Dependent Types

Statics + Dynamics mostly using
Abstracting Gradual Typing (Garcia et. al. 2016)

Main extensions:

108/178

Gradual Dependent Types

Type/Term Overlap

Statics + Dynamics mostly using
Abstracting Gradual Typing (Garcia et. al. 2016)

Main extensions:

109/178

Gradual Dependent Types

? as unknown
type and termType/Term Overlap

Statics + Dynamics mostly using
Abstracting Gradual Typing (Garcia et. al. 2016)

Main extensions:

110/178

Gradual Dependent Types

? as unknown
type and term

Type Indices

Type/Term Overlap

Statics + Dynamics mostly using
Abstracting Gradual Typing (Garcia et. al. 2016)

Main extensions:

111/178

Gradual Dependent Types

? as unknown
type and term

Type Indices ? as type index

Type/Term Overlap

Statics + Dynamics mostly using
Abstracting Gradual Typing (Garcia et. al. 2016)

Main extensions:

112/178

Gradual Dependent Types

? as unknown
type and term

Type Indices ? as type index

Proof term

Type/Term Overlap

Statics + Dynamics mostly using
Abstracting Gradual Typing (Garcia et. al. 2016)

Main extensions:

113/178

Gradual Dependent Types

? as unknown
type and term

Type Indices ? as type index

Proof term ? as a term
at runtime

Type/Term Overlap

Statics + Dynamics mostly using
Abstracting Gradual Typing (Garcia et. al. 2016)

Main extensions:

114/178

What’s the Catch?

115/178

What’s the Catch?

Dependent Types

116/178

What’s the Catch?

Dependent Types

Evaluate terms
at compile time

117/178

What’s the Catch?

Dependent Types

Evaluate terms
at compile time

Strongly
normalizing

118/178

What’s the Catch?

Dependent Types

Evaluate terms
at compile time

Strongly
normalizing

Failure free

119/178

What’s the Catch?

Dependent Types Gradual Types

Evaluate terms
at compile time

Strongly
normalizing

Failure free

120/178

What’s the Catch?

Dependent Types Gradual Types

Evaluate terms
at compile time

Evaluating has
effects

Strongly
normalizing

Failure free

121/178

What’s the Catch?

Dependent Types Gradual Types

Evaluate terms
at compile time

Evaluating has
effects

Strongly
normalizing

Failure free

Can diverge
i.e.

122/178

What’s the Catch?

Dependent Types Gradual Types

Evaluate terms
at compile time

Evaluating has
effects

Strongly
normalizing

Failure free

Can diverge
i.e.

Type errors in
evaluation

123/178

Key Idea: Approximate Normalization

124/178

Key Idea: Approximate Normalization

Exploit the phase distinction:

125/178

Key Idea: Approximate Normalization

Compile-time
Normalization

Exploit the phase distinction:

126/178

Key Idea: Approximate Normalization

Compile-time
Normalization

Always
terminates

Exploit the phase distinction:

127/178

Key Idea: Approximate Normalization

Compile-time
Normalization

Always
terminates

Approximate
results

Exploit the phase distinction:

128/178

Key Idea: Approximate Normalization

Compile-time
Normalization

Always
terminates

Approximate
results

Runtime
Evaluation

Exploit the phase distinction:

129/178

Key Idea: Approximate Normalization

Compile-time
Normalization

Always
terminates

Approximate
results

Runtime
Evaluation May diverge

Exploit the phase distinction:

130/178

Key Idea: Approximate Normalization

Compile-time
Normalization

Always
terminates

Approximate
results

Runtime
Evaluation May diverge Exact results

Exploit the phase distinction:

131/178

Compile-Time - Approximation #1: Termination

132/178

Compile-Time - Approximation #1: Termination

Based on Hereditary Substitution
(Watkins et al 2003)

133/178

Compile-Time - Approximation #1: Termination

Based on Hereditary Substitution
(Watkins et al 2003)

● Static version: normalization is structurally
recursive on types

134/178

Compile-Time - Approximation #1: Termination

Based on Hereditary Substitution
(Watkins et al 2003)

● Static version: normalization is structurally
recursive on types

● Our version:

135/178

Compile-Time - Approximation #1: Termination

Based on Hereditary Substitution
(Watkins et al 2003)

Types structurally decreasing?

● Static version: normalization is structurally
recursive on types

● Our version:

136/178

Compile-Time - Approximation #1: Termination

Based on Hereditary Substitution
(Watkins et al 2003)

Types structurally decreasing?

Yes

● Static version: normalization is structurally
recursive on types

● Our version:

137/178

Compile-Time - Approximation #1: Termination

Based on Hereditary Substitution
(Watkins et al 2003)

Proceed normally

Types structurally decreasing?

Yes

● Static version: normalization is structurally
recursive on types

● Our version:

138/178

Compile-Time - Approximation #1: Termination

Based on Hereditary Substitution
(Watkins et al 2003)

Proceed normally

Types structurally decreasing?

NoYes

● Static version: normalization is structurally
recursive on types

● Our version:

139/178

Compile-Time - Approximation #1: Termination

Based on Hereditary Substitution
(Watkins et al 2003)

Return ?Proceed normally

Types structurally decreasing?

NoYes

● Static version: normalization is structurally
recursive on types

● Our version:

140/178

Hereditary Substitution Examples

141/178

Hereditary Substitution Examples

142/178

Hereditary Substitution Examples

143/178

Hereditary Substitution Examples

144/178

Hereditary Substitution Examples

145/178

Hereditary Substitution Examples

146/178

Hereditary Substitution Examples

147/178

Hereditary Substitution Examples

148/178

Hereditary Substitution Examples

149/178

Hereditary Substitution Examples

150/178

Compile-Time - Approximation #2: Downcasts

151/178

Compile-Time - Approximation #2: Downcasts

Order types by precision

152/178

Compile-Time - Approximation #2: Downcasts

Order types by precision

Losing type information : ✓Safe

153/178

Compile-Time - Approximation #2: Downcasts

Order types by precision

Losing type information : ✓Safe

Gaining type information: ✗ Unsafe

154/178

Compile-Time - Approximation #2: Downcasts

Order types by precision

Losing type information : ✓Safe

Gaining type information: ✗ Unsafe

Unsafe operation: approximate!

155/178

Compile-Time - Approximation #2: Downcasts

Order types by precision

Losing type information : ✓Safe

Gaining type information: ✗ Unsafe

Unsafe operation: approximate!

156/178

Compile-Time - Approximation #2: Downcasts

Order types by precision

Losing type information : ✓Safe

Gaining type information: ✗ Unsafe

Unsafe operation: approximate!

157/178

Compile-Time - Approximation #2: Downcasts

Order types by precision

Losing type information : ✓Safe

Gaining type information: ✗ Unsafe

Unsafe operation: approximate!

158/178

Run-Time - Execution

159/178

Run-Time - Execution

● Terms annotated with evidence

160/178

Run-Time - Execution

● Terms annotated with evidence
- Most-precise currently-known type info

161/178

Run-Time - Execution

● Terms annotated with evidence
- Most-precise currently-known type info

● Combined using precision-meet

162/178

Run-Time - Execution

● Terms annotated with evidence
- Most-precise currently-known type info

● Combined using precision-meet
- Runtime error if meet does not exist

Wrapping Up

164/178

What We Built

165/178

What We Built

GDTL:

166/178

What We Built

GDTL:
Gradual Dependently Typed Language

167/178

What We Built

GDTL:
Gradual Dependently Typed Language

● Full spectrum, universe hierarchy

168/178

What We Built

GDTL:
Gradual Dependently Typed Language

● Full spectrum, universe hierarchy
● Can replace any type or term with ?

169/178

What We Built

GDTL:
Gradual Dependently Typed Language

● Full spectrum, universe hierarchy
● Can replace any type or term with ?
● Embeds fully typed & untyped calculi

170/178

What We Built

GDTL:
Gradual Dependently Typed Language
● Full spectrum, universe hierarchy
● Can replace any type or term with ?
● Embeds fully typed & untyped calculi
● Decidable typechecking via
approximate normalization

171/178

What We Built

GDTL:
Gradual Dependently Typed Language
● Full spectrum, universe hierarchy
● Can replace any type or term with ?
● Embeds fully typed & untyped calculi
● Decidable typechecking via
approximate normalization

● Proof of gradual type safety

172/178

What We Built

GDTL:
Gradual Dependently Typed Language
● Full spectrum, universe hierarchy
● Can replace any type or term with ?
● Embeds fully typed & untyped calculi
● Decidable typechecking via
approximate normalization

● Proof of gradual type safety
● Gradual Guarantees

173/178

Future Work

174/178

Future Work

● Inductives and Pattern Matching

175/178

Future Work

● Inductives and Pattern Matching
● Type Inference and Unification

176/178

Future Work

● Inductives and Pattern Matching
● Type Inference and Unification
● Blame and Error Reporting

177/178

Future Work

● Inductives and Pattern Matching
● Type Inference and Unification
● Blame and Error Reporting
● Eventual Goal: Idris frontend

GDTL:
Gradual Dependently Typed Language
● Full spectrum, universe hierarchy
● Can replace any type or term with ?
● Embeds fully typed & untyped calculi
● Decidable typechecking via
approximate normalization

● Proof of gradual type safety
● Gradual Guarantees

	Slide 1
	page2 (1)
	page2 (2)
	page2 (3)
	page2 (4)
	page2 (5)
	page2 (6)
	page2 (7)
	page2 (8)
	page2 (9)
	page2 (10)
	Slide 12
	page4 (1)
	page4 (2)
	page4 (3)
	page4 (4)
	page4 (5)
	page5 (1)
	page5 (2)
	page5 (3)
	page5 (4)
	page5 (5)
	page5 (6)
	page5 (7)
	page5 (8)
	Slide 26
	page7 (1)
	page7 (2)
	page7 (3)
	page7 (4)
	page7 (5)
	page7 (6)
	page7 (7)
	page7 (8)
	page8 (1)
	page8 (2)
	page8 (3)
	page8 (4)
	page8 (5)
	page8 (6)
	page8 (7)
	page8 (8)
	page8 (9)
	page8 (10)
	page8 (11)
	page8 (12)
	page8 (13)
	page8 (14)
	page9 (1)
	page9 (2)
	page9 (3)
	page10 (1)
	page10 (2)
	page10 (3)
	page10 (4)
	page10 (5)
	page10 (6)
	page10 (7)
	page11 (1)
	page11 (2)
	page12 (1)
	page12 (2)
	page12 (3)
	page12 (4)
	page12 (5)
	page12 (6)
	page12 (7)
	page12 (8)
	page12 (9)
	page13 (1)
	page13 (2)
	page13 (3)
	page14 (1)
	page14 (2)
	page14 (3)
	page14 (4)
	page14 (5)
	page14 (6)
	page14 (7)
	page14 (8)
	page14 (9)
	page14 (10)
	page14 (11)
	page14 (12)
	page14 (13)
	page14 (14)
	page15 (1)
	page15 (2)
	page16 (1)
	page16 (2)
	page16 (3)
	page16 (4)
	page17 (1)
	page17 (2)
	page17 (3)
	page18 (1)
	page18 (2)
	page18 (3)
	page18 (4)
	page18 (5)
	page18 (6)
	page18 (7)
	page18 (8)
	Slide 104
	page20 (1)
	page20 (2)
	page20 (3)
	page20 (4)
	page20 (5)
	page20 (6)
	page20 (7)
	page20 (8)
	page20 (9)
	page21 (1)
	page21 (2)
	page21 (3)
	page21 (4)
	page21 (5)
	page21 (6)
	page21 (7)
	page21 (8)
	page21 (9)
	page22 (1)
	page22 (2)
	page22 (3)
	page22 (4)
	page22 (5)
	page22 (6)
	page22 (7)
	page22 (8)
	page23 (1)
	page23 (2)
	page23 (3)
	page23 (4)
	page23 (5)
	page23 (6)
	page23 (7)
	page23 (8)
	page23 (9)
	page24 (1)
	page24 (2)
	page24 (3)
	page24 (4)
	page24 (5)
	page24 (6)
	page24 (7)
	page24 (8)
	page24 (9)
	page24 (10)
	page25 (1)
	page25 (2)
	page25 (3)
	page25 (4)
	page25 (5)
	page25 (6)
	page25 (7)
	page25 (8)
	page26 (1)
	page26 (2)
	page26 (3)
	page26 (4)
	page26 (5)
	Slide 163
	page28 (1)
	page28 (2)
	page28 (3)
	page28 (4)
	page28 (5)
	page28 (6)
	page28 (7)
	page28 (8)
	page28 (9)
	page29 (1)
	page29 (2)
	page29 (3)
	page29 (4)
	page29 (5)
	Slide 178

