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● Embeds fully typed & untyped calculi
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● Proof of gradual type safety
● Gradual Guarantees (Siek et al 2015): 
reducing precision of term won’t 
create new static or dynamic 
failures
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Dependent Types: Pain and Promise

Expectation

$> compile ./myprogram
>> 0 bugs detected!

Reality

$> compile ./myprogram
>> Type mismatch between 

  Vec Nat (m+n) 
 and 

 Vec Nat (n+m)

● Popular for proof assistants
● Not popular for programming 
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A Vicious Cycle

Complexity of 
Dependent Types

High Barrier
to Entry

Sparse Tooling 
and Libraries

Few Users of
Dependent Types

● Easier porting
● Safer FFI

● Flexible type system
● Rapid prototyping
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Motivation: Lists vs. Vectors

data List a 
  where
    Nil : List a
    Cons : a 
         -> List a 
         -> List a

head : List a -> a

data Vec (a : Type) (n : Nat)  
 where
    Nil : Vec a 0
    Cons : a 
         -> Vec a n 
         -> Vec a (n + 1)

head : Vec a (n + 1) -> a

Error on Nil Won’t typecheck for Nil

No size knowledge
in type

Length in type index
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sort : List Int -> List Int

sort Nil = Nil

sort (Cons head tail) =
  sort (filter (<= head) tail))
  ++ [head]
  ++ sort (filter (> head) tail))

filter : (Int -> Bool) 
       -> List Int -> List Int

Vec Int n Vec Int n

✓

Vec Int n Vec Int ___

} Need proof 
that 
lengths 
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The Static Approach

rewriteFilterLength :
  (v : Vec Int n)
  -> (p : Int -> Bool)
  -> Vec Int 
        (length (filter p v) 
         + 1 + length (filter (not . p) v) 
  ->  Vec Int n

Relies on induction, commutativity, etc.
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Static 
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Types

Existential 
Types, Inductive 
Proof

✗Significant 
effort required

Non-dependent 
Gradual Types

filter returns 
?
unknown type

✗Can have  
non-list return

Gradual 
Dependent 
Types

filter returns 
Vec Int ? 
unknown length

✓Precise in 
type, flexible in 
length!

Our approach!
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The GDTL Solution

sort : Vec Int n -> Vec Int n

sort Nil = Nil

sort (Cons head tail) =
  sort (filter (<= head) tail))
  ++ [head]
  ++ sort (filter (> head) tail))

filter : (Int -> Bool) 
       -> Vec Int n -> Vec Int ? 

} ?+1+? evals 
to ?, is 
consistent 
with n
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Gradual Type Safety

head : Vec a (n+1) -> a

theHead = head x

x : Vec a ?

x  Nil↦ x  Cons 1 Nil↦● Runs successfully
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rewriteFilterLength :
  (v : Vec Int n)
  -> (p : Int -> Bool)
  -> Vec Int 
        (length (filter p v) 
         + 1 + length (filter (not . p) v) 
  ->  Vec Int n

}
Like 
Idris/Agda 
typed holes

rewriteFilterLength = ?
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sort : Vec Int n -> Vec Int n

sort Nil = Nil

sort (Cons head tail) =

  sort (filter (<= head) tail))
  ++ [head]
  ++ sort (filter (> head) tail))

filter : (Int -> Bool) 
       -> Vec Int n -> Vec Int ? 

  rewriteFilterLength (

                                )

This code typechecks and runs!
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Semantics of ? in GDTL

● ? has type ?, can use at any type
● Eliminating ? produces ? 
● Runtime checks ensure safety

subst : a = b -> P a -> P b

badProof : 0 = 1
badProof = ?

head ((subst badProof nil) :: Vec Int 1) 

● Typechecks
● Runtime type error
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Gradual Dependent Types

? as unknown 
type and  term

Type Indices ? as type index

Proof term ? as a term 
at runtime

Type/Term Overlap

Statics + Dynamics mostly using 
Abstracting Gradual Typing (Garcia et. al. 2016)

Main extensions:
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What’s the Catch?

Dependent Types Gradual Types

Evaluate terms 
at compile time

Evaluating has 
effects

Strongly 
normalizing

Failure free

Can diverge
i.e.

Type errors in 
evaluation
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Key Idea: Approximate Normalization

Compile-time 
Normalization

Always 
terminates

Approximate 
results

Runtime 
Evaluation May diverge Exact results

Exploit the phase distinction:
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Compile-Time -  Approximation #1: Termination

Based on Hereditary Substitution 
(Watkins et al 2003)

Return ?Proceed normally

Types structurally decreasing?

NoYes

● Static version: normalization is structurally 
recursive on types

● Our version:



140/178

Hereditary Substitution Examples



141/178

Hereditary Substitution Examples



142/178

Hereditary Substitution Examples



143/178

Hereditary Substitution Examples



144/178

Hereditary Substitution Examples



145/178

Hereditary Substitution Examples



146/178

Hereditary Substitution Examples



147/178

Hereditary Substitution Examples



148/178

Hereditary Substitution Examples



149/178

Hereditary Substitution Examples



150/178

Compile-Time - Approximation #2: Downcasts



151/178

Compile-Time - Approximation #2: Downcasts

Order types by precision



152/178

Compile-Time - Approximation #2: Downcasts

Order types by precision

Losing type information :  ✓Safe 



153/178

Compile-Time - Approximation #2: Downcasts

Order types by precision

Losing type information :  ✓Safe 

Gaining type information:  ✗ Unsafe



154/178

Compile-Time - Approximation #2: Downcasts

Order types by precision

Losing type information :  ✓Safe 

Gaining type information:  ✗ Unsafe

Unsafe operation: approximate!



155/178

Compile-Time - Approximation #2: Downcasts

Order types by precision

Losing type information :  ✓Safe 

Gaining type information:  ✗ Unsafe

Unsafe operation: approximate!



156/178

Compile-Time - Approximation #2: Downcasts

Order types by precision

Losing type information :  ✓Safe 

Gaining type information:  ✗ Unsafe

Unsafe operation: approximate!



157/178

Compile-Time - Approximation #2: Downcasts

Order types by precision

Losing type information :  ✓Safe 

Gaining type information:  ✗ Unsafe

Unsafe operation: approximate!



158/178

Run-Time - Execution



159/178

Run-Time - Execution

● Terms annotated with evidence



160/178

Run-Time - Execution

● Terms annotated with evidence
- Most-precise currently-known type info



161/178

Run-Time - Execution

● Terms annotated with evidence
- Most-precise currently-known type info

● Combined using precision-meet



162/178

Run-Time - Execution

● Terms annotated with evidence
- Most-precise currently-known type info

● Combined using precision-meet
- Runtime error if meet does not exist
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Future Work

● Inductives and Pattern Matching
● Type Inference and Unification
● Blame and Error Reporting
● Eventual Goal: Idris frontend



GDTL: 
Gradual Dependently Typed Language
● Full spectrum, universe hierarchy
● Can replace any type or term with ?
● Embeds fully typed & untyped calculi
● Decidable typechecking via         
approximate normalization

● Proof of gradual type safety
● Gradual Guarantees 
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